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Substantial progress has been made in recent years on the 2D critical percola-
tion scaling limit and its conformal invariance properties. In particular, chordal
SLE6 (the Stochastic Loewner Evolution with parameter o=6) was, in the work
of Schramm and of Smirnov, identified as the scaling limit of the critical perco-
lation ‘‘exploration process.’’ In this paper we use that and other results to con-
struct what we argue is the full scaling limit of the collection of all closed con-
tours surrounding the critical percolation clusters on the 2D triangular lattice.
This random process or gas of continuum nonsimple loops in R2 is constructed
inductively by repeated use of chordal SLE6. These loops do not cross but do
touch each other—indeed, any two loops are connected by a finite ‘‘path’’ of
touching loops.
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loops; triangular lattice; conformal invariance.

1. INTRODUCTION

We are honored to participate in the special issue of JSP dedicated to
Elliott Lieb on his 70th birthday. He is an inspiration both to those starting
on their careers and to those who believe that there is no age cutoff for
outstanding research.

Percolation is a model with a wide range of applications and, espe-
cially in two dimensions, a well developed theory (see, for example, refs. 1
and 2). It has been used as a proving ground for developing tools that can
be applied to more complex systems, and is of great interest in its own



right, as it is perhaps the simplest (non-mean-field) model displaying a
phase transition with features such as scaling and universality at criticality.

In the critical case, the fractal and conformally invariant nature of (the
scaling limit of ) large percolation clusters has attracted much attention and
is of interest for both intrinsic reasons and as a paradigm for the study of
other systems.

The ground-breaking work of Schramm (3) and Smirnov (4) has elu-
cidated much about the nature of the scaling limit of the cluster boundaries
or contours in terms of SLE6, the Stochastic Loewner Evolution with
parameter o=6. Important and related work by Lawler–Schramm–
Werner (5–11) and Smirnov–Werner (12) has yielded a multitude of results on
exponents, conformal invariance and other properties of critical percola-
tion and other two-dimensional processes (excellent reviews are given in
refs. 13 and 14). To extend the work of Schramm and Smirnov, in the spirit
of Aizenman (15) and Aizenman–Burchard (16) (see also ref. 17), it is natural
to treat the scaling limit for the set of all contours, as was considered in
ref. 18 (see also Theorem 2.1 of ref. 9). But to our knowledge, no complete
description of that full scaling limit and its relation to SLE6 has been pro-
posed, although very interesting ideas do appear in ref. 18 (see Theorem 4
and Section 3.3 there) and ref. 9 (see Theorem 2.1 there). In ref. 19,
a certain critical dependent percolation model on the triangular (or hexag-
onal) lattice was proved to have the same scaling limit for all of its con-
tours as in the independent triangular case, even though the full scaling
limit itself had not been identified.

In this paper, we present an inductive construction using chordal
SLE6, which results in a random process (or gas) of continuum nonsimple
loops in the plane. The construction is given in Section 2 and then a
number of features that we argue are valid for this process are presented in
Section 3. Chief among these features is that this process of continuum
nonsimple loops is indeed the scaling limit (without need for subsequences)
of the set of all boundary contours for critical site percolation on the
triangular lattice. A technical property, which will be used to argue for the
scaling limit feature, is that various ways of organizing the construction
give the same limiting distribution. Sketches of the main arguments for the
claimed features, using refs. 3 and 4 and other work, are provided in
Section 4. A paper by the authors with detailed proofs is in preparation.

Another important property of the loop process is conformal
invariance; we do not discuss that explicitly since it is essentially the same
as in the conformal invariance results of Lawler–Schramm–Werner (5, 6) and
Smirnov (4) (see also refs. 13 and 14). We remark that in particular, the dis-
tribution of the loop process on the entire plane will be scale and inversion
invariant, in addition to being translation and rotation invariant.
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Fig. 1. Construction of a continuum loop around c in three steps.

As a preview of the way in which a single one of our continuum loops
is constructed, see the (very schematic) Fig. 1, in which three chordal SLE6
processes are used to yield a single loop surrounding a point c in the plane:
The process c1 (solid curve in the figure), when it first traps c provides a
domain D1 for the second process c2. A domain D2 for the third process c3
(dotted curve) is provided when c2 makes an excursion (dashed curve) from
A to B, two points on (the ‘‘internal perimeter’’ of ) c1, and thus traps c
between itself and (the ‘‘internal perimeter’’ of ) c1. The continuum loop
consists of the excursion segment of c2 from A to B followed by c3 from B
to A.

We note that in our inductive construction all loops are obtained
essentially as in Fig. 1, except that the domain D1 may itself be built out of
more than one SLE6 process. In the full plane version of our continuum
nonsimple loop process, these SLE6 processes (or the excursions into which
they can be decomposed) are themselves parts of other constructed loops
and it follows that every new loop touches previous ones (e.g., at the points
A and B in Fig. 1). This leads to property (4) of Section 3, that any two of
the continuum nonsimple loops are connected by a ‘‘path’’ of touching
loops. The analogous lattice result concerns large percolation clusters that
almost touch (i.e., their boundary contours are separated by only a single
hexagonal cell) and can be explained in terms of standard ‘‘number of
arms’’ arguments (see ref. 15 and Lemma 5 of ref. 20). It is also related to
the high probability that ‘‘fjords’’ are of minimal width, a phenomenon
observed numerically by Grossman–Aharony (21, 22) and explained by
Aizenman–Duplantier–Aharony, (23) and which is a key ingredient of our
scaling limit claim.
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In addition to constructing the continuum loops from SLE6 processes,
one can also do the reverse—see property 5 of Section 3. We expect that
this property, combined with some locality features in the spirit of those
already known for SLE6 (5, 13, 14) should be enough to characterize the full
process of continuum nonsimple loops. Other characterizations of the full
scaling limit, based on Cardy type crossing formulas, (24, 25) have also been
proposed—see, e.g., refs. 3–5, 27.

The basis for the scaling limit claim, presented in Section 4, is a con-
struction for discrete site percolation on the triangular lattice T, analogous
to the construction of the process of continuum nonsimple loops. (We will
generally think of the sites of the triangular lattice as the elementary cells of
a regular hexagonal lattice H embedded in the plane—see Fig. 2.) The
argument that this discrete construction leads to a proof of the claimed
limit is of course itself based on Schramm’s (3) and Smirnov’s (4) work on the
scaling limit of the percolation ‘‘exploration process,’’ which we now briefly
review.

Let D be a bounded simply connected open subset of the plane, with
Jordan boundary “D (i.e., given by a closed continuous simple curve) and
two distinct specified points a, b in “D. (Although the restriction to only
Jordan regions can probably be dispensed with, it is convenient to have it,
as we will throughout this paper.) There is a well-defined stochastic process
c(t)=cD, a, b(t) for t ¥ [0,.] in the closure D̄ with c(0)=a, c(.)=b and
Hölder continuous sample paths that is the trace of Schramm’s chordal
SLE6, the Stochastic Loewner Evolution with parameter o=6; this is
conventionally defined first on the upper half plane with boundary points
0,. and then conformally mapped to D (see ref. 5).

Fig. 2. Portion of the hexagonal lattice.
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A major conclusion of Smirnov (4) is that the scaling limit of a certain
‘‘exploration’’ process (see Section 4.2 for the definition) for critical inde-
pendent site percolation on the triangular lattice (each site is equally likely
to be yellow (minus) or blue (plus)) is the SLE6 process c. This is a state-
ment about convergence in distribution, where the topology on sample
paths is that of Aizenman–Burchard, (16) which uses a supremum norm, but
with monotonic reparametrizations of the paths allowed. The exploration
process cd runs along the edges of the hexagonal lattice that is dual to the
triangular lattice of mesh size d. It basically represents the contour separat-
ing blue clusters in D that reach the part “a, bD of the boundary “D that
is traversed when touring “D counterclockwise from a to b and yellow
clusters in D that reach the other part “b, aD of the boundary.

The sample paths of c touch both “D and themselves many times, but
they are noncrossing (and do not touch the same point more than twice or
a boundary point even twice). The set D0c[0,.] is a countable union of
its connected components, which are open and simply connected—they are
Jordan regions like the original region D, as will be discussed later in this
section (see also refs. 11 and 14). If z is a deterministic point in D, then
with probability one, z is not touched by c (26) and so belongs to a unique
one of these, that we denote Da, b(z).

There are four kinds of components which may be usefully thought of in
terms of how a point z in the interior of the component was first ‘‘trapped’’ at
some time t1 by c[0, t1] perhaps together with either “a, bD or “b, aD: (1) those
components whose boundary contains a segment of “b, aD between two suc-
cessive visits at c0(z)=c(t0) and c1(z)=c(t1) to “b, aD (where here and below
t0 < t1), (2) the analogous components with “b, aD replaced by the other part
of the boundary “a, bD, (3) those components formed when c0(z)=c(t0)=
c(t1)=c1(z) with c winding about z in a counterclockwise direction between
t0 and t1, and finally (4) the analogous clockwise components.

The boundaries of these components, other than the segments of “a, bD
or “b, aD in cases (1) and (2), are related to the ‘‘external perimeter’’ of
chordal SLE6 that was also studied by Smirnov, (4) Lawler–Schramm–
Werner, (11) and Werner. (14, 27) Besides the exploration process itself, there
are natural lattice analogues to these components, or more directly relevant
for us, lattice analogues to their boundaries and to the points c0(z), c1(z)
on their boundaries. We argue that it should follow from the work of
Smirnov combined with other percolation arguments (see Section 4.4) that
for any finitely (or countably) many deterministic points z1, z2,... in D, the
joint distribution of the corresponding boundaries and points converges to
the distribution of the continuum SLE6 objects. This convergence also
shows that the boundaries of these regions are Jordan curves (see ref. 23
and also refs. 11 and 14).
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To obtain these new lattice analogues, one ‘‘fattens’’ the exploration
process from being a path along the dual lattice (i.e., along the edges of
dH) to include all the blue and yellow sites that touch that path (i.e., the
hexagons that have actually been explored while constructing the path cd).
Then one considers the connected (in the lattice sense) components of the
difference between the set of all the sites in D and the set of all sites in the
fattened exploration path. For more details, see Section 4.

2. CONSTRUCTION OF THE CONTINUUM NONSIMPLE LOOPS

In defining our process, we will freely switch between the real plane R2,
with x and y coordinates, and the complex plane C, according to conve-
nience. The basic ingredient in the algorithmic construction consists of a
chordal SLE6 path between two points a and b of the boundary “D of a
given simply connected domain D … C. The domains we will encounter in
the construction are bounded open sets D whose boundaries “D are Jordan
curves. This ensures that the unit disc U={z ¥ C : |z| < 1} can be mapped
onto D via a conformal transformation that can be extended continuously
to the boundary.

As we will explain soon, sometimes the two boundary points are ‘‘na-
turally’’ determined as a product of the construction itself, and sometimes
they are given as an input to the construction. In the second case, there are
various procedures which would yield the ‘‘correct’’ distribution for the
resulting continuum nonsimple loop process; one possibility is as follows.
Given a domain D, choose a and b so that, of all points in “D, they have
maximal x-distance or maximal y-distance, whichever is greater. A crucial
aspect of this procedure, as discussed in Section 4.4.2 below, is that there is
a bounded away from zero probability that the resulting subdomains
Da, b(z) have maximal x-distance (or else maximal y-distance) shrunk by a
bounded away from one factor compared to the domain D. Another
aspect, implicit in Sections 4.3 and 4.4, is that the corresponding (a, b)’s of
our discrete construction converge in distribution (in the scaling limit) to
those of the continuum construction. This latter aspect and also the well-
definedness of the above procedure would be resolved by showing that, in
the context of our continuum construction, the choices of (a, b) are unique
with probability one (for the starting domain, the unit disc U, we take
(a, b)=(−i, i)). We believe that this is so and proceed under that assump-
tion, but in any case, the issue can be avoided by doing a randomized
version of the above procedure in which (a, b) are chosen to be ‘‘fairly
close’’ to having the maximal x-distance or y-distance.

To start our construction, we take the unit disc U=U1 (later, to take
a thermodynamic limit and extend the loop process to the entire plane, the
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unit disc will be replaced by a growing sequence of large discs, UR) and
begin by ‘‘running’’ chordal SLE6 inside U from a=−i to b=i.

The resulting path cU, −i, i (the trace of chordal SLE6) touches itself and
“U (infinitely) many times. The set U0cU, −i, i[0,.] is a countable union of
its connected components, which are open and simply connected. They can
be of four different types, as explained in the introduction.

To conclude the first step (in this version of the construction), we
consider all domains of type (1), corresponding to excursions of the SLE6
path from the left portion of the boundary of the unit disc (the one from i
to −i counterclockwise). For each such domain D, the points a and b on
its boundary are chosen to be respectively those points where the excursion
ends and where it begins, that is, if z ¥ D, we set a=c1(z) and b=c0(z)
(in the notation of Section 1). We then run chordal SLE6 from a to b. The
loop obtained by pasting together the excursion from b to a followed by
the new SLE6 path from a to b is one of our continuum loops. At the end
of the first step, then, the procedure has generated countably many loops
that touch the left side of the original boundary (the portion “i, −iU of the
boundary of U); each of these loops touches the left side of the original
boundary but may or may not touch the right side.

The last part of the first step also produces new domains, correspond-
ing to the connected components of D0cD, a, b[0,.] for all domains D of
type (1). Each one of these components, together with all the domains of
type (2), (3), and (4) previously generated, is to be used in the next step
of the construction, playing the role of the unit disc. For each one of
these domains, we choose the ‘‘new a’’ and ‘‘new b’’ on the boundary as
explained before, and then continue with the construction. Note that the
‘‘new a’’ and ‘‘new b’’ are chosen according to the rule explained at the
beginning of this section also for domains of type (2), even though they are
generated by excursions like the domains of type (1).

This iterative procedure produces at each step a countable set of loops.
The limiting object, corresponding to the collection of all such loops, is our
basic process. (Technically speaking, we should include also trivial loops
fixed at each z in C 2 {.} so that the collection of loops is closed in an
appropriate sense. (16)) Some of its properties will be given in the next
section.

As explained, the construction carries on iteratively and can be per-
formed simultaneously on all the domains that are generated at each step.
We wish to emphasize, though, that the obvious monotonicity of the pro-
cedure, where at each step new paths are added independently in different
domains, and new domains are formed from the existing ones, implies that
any other choice of the order in which the domains are used would give the
same result (i.e., produce the same limiting distribution), provided that
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every domain that is formed during the construction is eventually used.
In Section 4, when arguing that the lattice scaling limit coincides with our
continuum nonsimple loop process, it will be convenient to utilize a differ-
ent procedure in which each step involves only a single SLE6 for a single
domain. This will be done with the help of a deterministic set of points P
that are dense in C and are endowed with a deterministic order. The
domains will then be used one at a time, with domains containing higher
ranked points of P having a higher priority for order of being used.

In Section 4, arguments will be given as to why the process of loops we
have just constructed is the scaling limit, as dQ 0, of the set of all cluster
boundary contours for critical percolation on the portion of the triangular
lattice of mesh size d sitting within the disc U1 of radius 1, and with blue
(plus) boundary conditions imposed. Of course, essentially the same con-
struction and scaling limit results can be done on the disc UR of radius R.
It is not hard to then verify that the limit in distribution of the loop process
exists as R Q. and that this represents the scaling limit of the set of all
cluster boundary contours in the entire plane, with no boundary conditions
needed. It is this process in the entire plane that we will consider in the next
section of the paper dealing with properties of the loop process.

3. FEATURES OF THE CONTINUUM NONSIMPLE LOOP PROCESS

In this section we present a number of features that we argue will be
valid for our process of continuum nonsimple loops in the plane. Some of
them are direct consequences of the continuum algorithmic construction,
while others become clear only in light of the analogous construction for
discrete percolation, which will be presented in the next section.

The first feature is the scaling limit property—which is used to derive
the other properties. A sketch of the derivation of the scaling limit and
other properties is given in the next section of the paper. The scaling limit
property (1) is a distributional statement; properties (2)–(4) all involve
statements that are valid with probability one; property (5) is a bit of a
hybrid.

(1) The continuum nonsimple loop process is the scaling limit of the
set of all boundary contours for critical site percolation on the triangular
lattice.

(2) This process is a random collection of noncrossing, continuous
loops on the plane. The loops touch themselves and each other many times,
but no three or more loops can come together at the same point, and a
single loop cannot touch the same point more than twice.

164 Camia and Newman



(3) Any deterministic point of the plane is surrounded by an infinite
family of nested loops with diameters going to both zero and infinity; any
annulus about that point with inner radius r1 > 0 and outer radius r2 <.
contains only a finite number of loops. Consequently, any two distinct
deterministic points of the plane are separated by loops winding around
them.

(4) Any two loops are connected by a finite ‘‘path’’ of touching
loops.

(5) For a (deterministic) Jordan region D with two boundary points
a and b, a process distributed as chordal SLE6 from a to b can be con-
structed starting from the continuum nonsimple loops (in the whole plane)
by doing a continuum analogue of what is done on the lattice to piece
together cluster boundary segments to give the lattice percolation explora-
tion process (see below).

We conclude this section of the paper with a more detailed explanation
of the construction just mentioned in property (5). To do the construction,
it is useful to first convert all the loops into directed ones. There is one
binary choice to be made: any one loop can be given either the clockwise or
counterclockwise direction and then all other loops are automatically
determined (via the natural nesting tree structure of the set of all the loops)
by requiring that the set of all loops (ordered by nesting) about any
deterministic point alternate in direction. Back on the percolation lattice
the two choices correspond to either having yellow just to the left of the
directed path and blue just to the right or vice versa; the two choices are
also of course related by a global color flip.

For convenience, let us suppose that a is at the bottom and b is at the
top of D so that the boundary is divided into a left and right part by these
two points. The desired path from a to b is then put together using all of
the following directed segments of the loops (most of the analogous types
of segments for the lattice exploration process may be seen in Fig. 3):
(i) ‘‘excursions’’ from the left part to the right part of the boundary (they
touch each of the two boundary parts at exactly one point), (ii) ‘‘excur-
sions’’ from right to left, (iii) excursions from the left part to itself (they
touch that part of the boundary at exactly two points) which do not touch
the right part and which are maximal in that there is not another such
excursion between them and the right part, and (iv) the analogous
excursions from the right part to itself.

There are countably many excursions of types (i) and (ii) which are
ordered from lower to higher and alternate between types (i) and (ii). The
segment of the right boundary between where an excursion of type (i) ends
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Fig. 3. Construction of the outer contour of a cluster of yellow/minus (white in the figure)
hexagons in two steps by means of a first exploration from the vertex a to b (heavy line),
followed by a second one from aŒ to bŒ (heavy broken line). The outer layer of hexagons does
not belong to the domain where the explorations are carried out, but represents its
monochromatic blue/plus external site boundary.

and the next excursion of type (ii) begins supports countably many excur-
sions of type (iv) which are also ordered from lower to higher. These may
be all pieced together (they don’t quite touch so a limit is needed) in order
that a continuous path connecting the type (i) to the type (ii) excursion is
obtained. Using such connecting paths on the right and the analogous
paths on the left that connect the end of a type (ii) to the beginning of the
next type (i), one can connect all the type (i) and (ii) excursions in order
and obtain finally the desired path from a to b.

4. THE CONTINUUM NONSIMPLE LOOP PROCESS AS SCALING

LIMIT

In this section we will introduce a discrete inductive construction
which is analogous to the continuum construction given in Section 2.
Our interest in the discrete construction comes from the claim that the
continuum one is its scaling limit. This requires comparing the two
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constructions. In order to do so, we first reorganize the continuum one and
introduce some notation.

4.1. Priority-Ordered Continuum Construction

We want to arrange the continuum construction in such a way that
each step corresponds to a single new SLE6 path. To do that, we need to
order the domains present at the beginning of each stage (which is the term
we use for a group of successive single steps), so as to choose which ones to
use in the steps of that stage. The domains are the connected components
that the original domain is broken up into by all the SLE6 paths con-
structed up to the beginning of the new stage. The ordering will be done
with the help of the deterministic ordered set of points P, dense in C,
introduced in Section 2.

The first step and stage consists of an SLE6 path c1=cU, −i, i inside U
from −i to i which, as explained in Section 2, produces many domains
which are the connected components of the set U0c1[0,.]. These
domains can be priority-ordered using points in P, according to the rank
of the highest ranking point of P that each contains. The priority orders of
domains change as the construction proceeds.

The second stage of the construction consists of two SLE6 paths, c2
and c3, that are produced in the two domains with highest priority at the
end of the first stage, the priority being determined using the points of P
and the starting and ending points for domains that are not of type (1)
being chosen as explained in Section 2.

In general, for the kth stage of the construction, k SLE6 paths are
produced in those k domains present at the end of the last stage with
highest priority, again using the points of P for ranking the domains. This
way of organizing the construction does not affect the final result, as dis-
cussed in Section 2, and has the advantage that to each step corresponds a
single SLE6 path, with the SLE6 paths ordered.

4.2. Discrete Exploration and Loop Construction

We will organize the discrete construction, which we will present soon,
in the same way. Before doing that, though, we briefly introduce its key
ingredient—the discrete exploration process for a general simply connected
set Dd of hexagons.

To begin, we denote by “Dd the edge boundary. For two points, a, b in
“Dd suitably chosen at the vertices of two hexagons, the usual exploration
process (4) (see also refs. 13, 14, and 27) with ± boundary conditions (i.e.,
blue hexagons just outside the counterclockwise portion “a, bDd of “Dd from
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a to b and yellow hexagons just outside the other portion “b, aDd) can be
described as a sort of self-avoiding random walk on the edges of the
hexagons contained in Dd that moves left (with respect to the current
direction of exploration) when a blue hexagon is encountered and right
when a yellow one is encountered.

We use this rule for ± boundary conditions, and also for + (blue)
boundary conditions, proceeding at the boundary as if we had ± boundary
conditions (see Fig. 3). For + and − (yellow) boundary conditions, we
use the ‘‘opposite’’ (with respect to color) rule. We remark that although
the exploration process itself changes under a color flip of the boundary
conditions, its distribution is color-blind.

The interpretation of the exploration process depends on whether the
boundary condition is monochromatic or not. Let DDd be the external
(outer) site boundary of Dd, with Da, bDd and Db, aDd representing the
portions next to “a, bDd and “b, aDd respectively.

• For regions with ± (respectively, + ) boundary conditions, the
exploration path represents the contour separating the blue (respectively,
yellow) cluster that contains Da, bDd from the yellow (respectively, blue)
cluster that contains Db, aDd.

• For regions with monochromatic blue (respectively, yellow) bound-
ary conditions, the exploration path represents portions of the outer
boundary contours of yellow (respectively, blue) clusters touching “b, aDd

and adjacent to blue (respectively, yellow) hexagons that are the starting
point of a blue (respectively, yellow) path (possibly an empty path) that
reaches “a, bDd, pasted together using portions of “b, aDd.

Next, we show how to get the complete outer contour of a
monochromatic (say, yellow) cluster by twice using the exploration process
described above (see Fig. 3). Consider a large simply connected domain Dd

surrounded by blue hexagons, which we can identify with DDd. Dd will
contain many clusters of both colors in its interior. We pick two suitably
chosen points a, b ¥ “Dd and perform the exploration from a to b.

While performing the exploration process, we discover the color of the
hexagons that touch the exploration path. We want to keep track of that
information. As a result, at the end of the exploration process we have
three ‘‘paths:’’ the exploration path cd along the edges of the hexagonal
lattice, and respectively the ‘‘paths’’ CdY and CdB along the (respectively,
yellow or blue) sites of the triangular lattice that touch it (i.e., those
hexagons that have at least one edge belonging to the exploration path).
The latter lattice ‘‘paths’’ are not in general simple, as they can form loops
and have dangling ends.
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The set Dd0{CdY 2 CdB} is the union of its connected components
(in the lattice sense), which are simply connected. There are four types of
components which may be usefully thought of in terms of their external site
boundaries: (1) those components whose site boundary contains both sites
in CdY and Db, aDd, (2) the analogous components with Db, aDd replaced by
Da, bDd and CdY by CdB, (3) those components whose site boundary only
contains sites in CdY, and finally (4) the analogous components with CdY
replaced by CdB.

If we now take a region of type (1), there are natural starting and
ending points (where the excursion that produces that region respectively
ends and starts; e.g., aŒ, bŒ in Fig. 3) for an exploration process within it.
Performing such an exploration process inside the specified domain of type
(1) and pasting the new exploration path together with the portion of a
previous exploration path corresponding to the excursion that produced
that domain of type (1) will generate a loop along the edges of the hexag-
onal lattice. The loop is the outer contour of a yellow cluster that touches
“b, aDd and is adjacent (on its ‘‘right’’) to blue hexagons, each of which is
the starting point of a blue path to “a, bDd.

Analogous exploration processes in the other regions of type (1)
produce similar loops on the edges of dH that are also boundary contours.
In fact, every domain with ± (or + ) boundary conditions obtained during
the discrete algorithmic construction that we are about to present will
contain an exploration path which, pasted together with the appropriate
part of a previous exploration path, provides the complete outer boundary
contour of a monochromatic cluster.

4.3. Full Discrete Construction

We now give the algorithmic construction for discrete percolation
which is the analogue of the continuum one. Each step of the construction
is a single percolation exploration process; the order of successive steps is
organized as in the continuum construction detailed at the beginning of this
section. We start with the set Dd

0 of hexagons that are contained in the unit
disc U and will make use of the deterministic countable ordered set P of
points dense in C that was introduced in Section 2.

The first step consists of an exploration process inside Dd
0. For this, we

need to select two points a and b in “Dd
0. We choose for a some vertex close

to −i, and for b one close to i. The first exploration produces a path cd1
and, for d small, many new domains of all four types. These domains are
ordered with the help of points in P as in the continuum case, and that
order is used, at each stage of the process, to determine the next group of
exploration processes. So, for the second stage of the construction, two
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domains are chosen and explored, and so on. With this choice, the
exploration processes and paths are naturally ordered: cd1, c

d
2,... .

Each exploration process of course requires choosing a starting and
ending point, which is done mimicking what is done in the continuum case
(with some adjustments due to the discrete nature of the lattice). For
domains of type (1), with ± or + boundary conditions, the choice is
the natural one, explained before, which produces a loop using the edges
of dH. For a domain Dd

k (used at the kth step) of type other than (1), and
therefore with monochromatic boundary conditions, two vertices are
chosen that are close to the two points of “Dd

k selected according to the rule
given in Section 2.

The procedure continues iteratively, with regions of type (2), (3),
and (4), which have monochromatic boundaries, playing the role played in
the first step by Dd

0. As the construction continues, new loops along the
edges of the hexagonal lattice are formed which correspond to the outer
boundary contours of constant sign (monochromatic) clusters.

4.4. Ingredients for Convergence

By comparing the discrete and continuum version of the algorithmic
construction, and using repeated applications of Smirnov’s work, (4) we will
argue that for any fixed k, the first k steps of the discrete construction
converge (jointly, in distribution) to the first k steps of the continuum
construction, as dQ 0. This claim is an extension of the discussion near the
end of Section 1 about convergence in distribution of certain lattice
boundaries and points to their continuum analogues. We note that one
complication is due to the fact that the boundaries of the domains
where the exploration processes are performed are not deterministic,
but are themselves obtained using exploration processes. Some continuity
arguments are therefore needed.

4.4.1. Matching Continuous and Discrete Domains and Loops

A key ingredient is the observation that the probability of ‘‘fjords’’ of
width larger than the minimal one goes to zero in the scaling limit. (23) This
ensures that the domains and loops generated at various steps of the con-
tinuum construction are the limits of corresponding domains and loops
produced in the discrete one, so that, e.g., one can identify, with probabil-
ity going to one as dQ 0, the domain containing a point c at a given step of
the continuum construction with the domain containing c at the equivalent
step of the discrete one.
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4.4.2. Finding Large Contours in O(1) Steps

The discrete algorithm will reach and discover all the boundary con-
tours inside U; moreover we argue that the number of steps Ke(d) needed
for the discrete algorithm to recover all contours in U of diameter larger
than a given e > 0 is bounded (in probability) as dQ 0.

This uses the observation that the discrete algorithm cannot ‘‘skip’’ a
contour and move to explore the domain inside it and the fact that the
maximum diameter of the domains present inside U after k steps of the
discrete algorithm tends to zero in probability as k Q., dQ 0. To under-
stand the last fact, first of all notice that the construction cannot produce
‘‘too many’’ distinct domains of diameter greater than e, or else there
would be too many disjoint ‘‘macroscopic’’ monochromatic paths (the site
boundaries of those domains) in dT 5U to satisfy the multiple crossing
probability bounds of ref. 16. Consider now a domain Dd with points a and
b on the boundary “Dd chosen because they have, among all points in “Dd,
maximal x-distance. Then standard percolation arguments (29, 30) ensure that,
with bounded away from zero probability, the maximal x-distance between
points on the boundary of each of the components that Dd is split up into
by effect of the exploration process is smaller than, say, two thirds of the
x-distance between a and b. (Notice also that each newly formed domain is
‘‘unexplored territory’’ on which no information is available before the
exploration process inside it begins.)

The proof of property (1) of Section 3 is completed by first letting
eQ 0 and then by taking the thermodynamic limit (to obtain a loop
process in the entire plane, as discussed at the end of Section 2).

4.5. Properties of the Continuum Loop Process

We now turn to brief sketches of the derivations of the other proper-
ties presented in Section 3.

(2) The noncrossing property of contours is preserved in the scaling
limit, and the fact that they touch themselves and each other follows fairly
directly from the continuum construction (see the discussion below about
property (4)). The properties that no three or more loops can come
together at the same point and a single loop cannot touch the same point
more than twice follow from standard ‘‘number of arms’’ arguments (see
ref. 15 and Lemma 5 of ref. 20).

(3) Both the fact that any deterministic point of the plane is sur-
rounded by infinitely many loops and the claim about the inner and outer
radii of loops surrounding a given point follow from property (1) combined
with standard percolation arguments (29, 30) (see also Lemma 3 of ref. 20).
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(4) This property follows fairly directly from the continuum con-
struction, as discussed in Section 1. As explained in the introduction, the
analogous lattice result concerns large clusters of the same sign that almost
touch and the existence of ‘‘macroscopic fjords’’ only of minimal width (see
refs. 21–23). For example, the existence of a long double monochromatic
layer of hexagons separating two large clusters of the same color would
give rise to six disjoint ‘‘macroscopic’’ paths of hexagons not all of the
same color which start within a ‘‘microscopic’’ distance of each other. The
probability of this happening goes to zero as dQ 0.

(5) This property is proved by noting that the usual lattice explora-
tion process can be realized as a discrete version of the continuum explora-
tion procedure outlined at the end of Section 3. By ref. 4, it is enough to
show that the lattice version converges to the continuum one.
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